Power BI Engineer (Power BI, DAX, Power Query) - Interview Q&A Guide

 

Power BI Engineer (Power BI, DAX, Power Query) - Interview Q&A Guide

Basic Questions (5)

1. What is Power BI and explain its main components?

Answer: Power BI is Microsoft’s business intelligence platform for data visualization and analytics. Main components:

           Power BI Desktop: Development environment for creating reports

           Power BI Service: Cloud-based service for sharing and collaboration

           Power BI Mobile: Mobile apps for consuming reports

           Power Query: Data transformation and preparation tool

           DAX: Data Analysis Expressions language for calculations

           Power BI Gateway: Connects cloud service to on-premises data

2. What is the difference between Power BI Desktop, Pro, and Premium?

Answer:

           Power BI Desktop: Free tool for creating reports and models

           Power BI Pro: $10/user/month, includes sharing, collaboration, and 10GB storage

           Power BI Premium: Capacity-based licensing, advanced features, larger datasets, paginated reports, and AI capabilities

3. Explain the difference between Import, DirectQuery, and Live Connection modes.

Answer:

           Import: Data copied to Power BI dataset, fastest performance, limited by dataset size

           DirectQuery: Queries sent to source in real-time, always current data, slower performance

           Live Connection: Direct connection to Analysis Services or Power BI datasets, real-time data

4. What is DAX and how does it differ from SQL?

Answer: DAX (Data Analysis Expressions) is a formula language for Power BI, Excel, and Analysis Services. Unlike SQL:

           DAX works with column-oriented data models

           Has filter context and row context concepts

           Designed for analytical calculations and aggregations

           Uses relationships between tables automatically

5. What is Power Query and its primary purpose?

Answer: Power Query is a data transformation engine that:

           Connects to various data sources

           Cleans and transforms data before loading

           Uses M language for transformations

           Provides a visual interface for data preparation

           Supports data profiling and quality assessment

Intermediate Questions (20)

6. Explain filter context and row context in DAX.

Answer:

           Filter Context: Defines which rows are visible for calculation, influenced by slicers, filters, and visual filters

           Row Context: Iteration through table rows, occurs in calculated columns or iterator functions

// Filter context example
Total Sales = SUM(Sales[Amount])  // Affected by filters

// Row context example
Profit Margin = Sales[Revenue] - Sales[Cost]  // Calculated column

7. How do you create and optimize relationships between tables in Power BI?

Answer:

1.         Relationship types: One-to-many (most common), many-to-many, one-to-one

2.         Cardinality: Choose correct cardinality for performance

3.         Cross-filter direction: Single or bi-directional

4.         Active vs inactive: Only one active relationship between tables

5.         Optimization: Use integer keys, avoid bi-directional when possible

8. What are calculated columns vs measures in DAX?

Answer:

           Calculated Columns: Computed at refresh time, stored in model, use row context

           Measures: Computed at query time, not stored, use filter context

// Calculated Column
Full Name = Customers[First Name] & " " & Customers[Last Name]

// Measure
Total Revenue = SUM(Sales[Amount])

9. How do you handle slowly changing dimensions in Power BI?

Answer:

1.         Type 1 (Overwrite): Simply update the existing record

2.         Type 2 (Add new record): Create new record with effective dates

3.         Type 3 (Add new column): Add columns for current and previous values

4.         Power Query: Use merge queries to handle SCD logic

5.         Dataflows: Implement SCD in Power BI dataflows

10. Explain the CALCULATE function and its importance in DAX.

Answer: CALCULATE modifies filter context and is essential for complex calculations:

// Basic syntax
CALCULATE(<expression>, <filter1>, <filter2>, ...)

// Examples
Sales Last Year = CALCULATE([Total Sales], SAMEPERIODLASTYEAR(Dates[Date]))
High Value Sales = CALCULATE([Total Sales], Sales[Amount] > 1000)

11. How do you implement security in Power BI?

Answer:

1.         Row-level Security (RLS): Filter data based on user identity

2.         Object-level Security: Control access to specific objects

3.         Dataset permissions: Manage who can view/edit datasets

4.         Workspace roles: Admin, Member, Contributor, Viewer

5.         App permissions: Control app distribution and access

// RLS filter example
[Territory] = USERNAME()

12. What are Power Query M functions and how do you use them?

Answer: M is the functional language behind Power Query:

// Basic M function
let
    Source = Excel.Workbook(File.Contents("C:\data.xlsx")),
    Sheet1 = Source{[Item="Sheet1",Kind="Sheet"]}[Data],
    CleanData = Table.RemoveBlankRows(Sheet1)
in
    CleanData

13. How do you optimize Power BI report performance?

Answer:

1.         Data model optimization: Use appropriate data types, remove unnecessary columns

2.         DAX optimization: Use variables, avoid complex calculations in visuals

3.         Visual optimization: Limit number of visuals per page

4.         Import vs DirectQuery: Choose appropriate storage mode

5.         Aggregations: Use aggregation tables for large datasets

6.         Query reduction: Use performance analyzer

14. Explain time intelligence functions in DAX.

Answer: Time intelligence functions work with date tables:

// Year-to-date
YTD Sales = TOTALYTD([Total Sales], Dates[Date])

// Previous period
Previous Month = CALCULATE([Total Sales], PREVIOUSMONTH(Dates[Date]))

// Same period last year
SPLY Sales = CALCULATE([Total Sales], SAMEPERIODLASTYEAR(Dates[Date]))

15. How do you handle data refresh and scheduling in Power BI?

Answer:

1.         Personal Gateway: For personal data sources

2.         On-premises Gateway: For organizational data sources

3.         Scheduled refresh: Configure automatic refresh schedules

4.         Incremental refresh: Refresh only new/changed data

5.         Dataflows: Centralize data preparation and refresh

6.         API refresh: Programmatic refresh using REST API

16. What are Power BI dataflows and when would you use them?

Answer: Dataflows are reusable data preparation components:

           Centralized ETL: Common data transformations

           Self-service BI: Business users can create data sources

           Performance: Reduce load on source systems

           Governance: Centralized data management

           Reusability: Share common entities across datasets

17. How do you implement drill-through and drill-down functionality?

Answer:

           Drill-down: Navigate hierarchy levels (Year → Quarter → Month)

           Drill-through: Navigate to detailed page with filtered context

           Bookmarks: Save specific report states

           Buttons: Custom navigation between pages

           URL actions: Link to external resources

18. Explain the concept of star schema and its benefits in Power BI.

Answer: Star schema consists of:

           Fact tables: Contain measures and foreign keys

           Dimension tables: Contain descriptive attributes

           Benefits: Optimized for analysis, better performance, easier DAX calculations

           Relationships: Dimension tables connect to fact tables

19. How do you handle many-to-many relationships in Power BI?

Answer:

1.         Bridge tables: Create intermediate table to resolve relationship

2.         Many-to-many cardinality: Use when appropriate (Power BI 2019+)

3.         CROSSFILTER function: Control filter direction in DAX

4.         Bidirectional filtering: Enable when necessary

// Many-to-many measure
Sales by Category =
CALCULATE(
    [Total Sales],
    USERELATIONSHIP(Products[ProductID], Bridge[ProductID])
)

20. What are composite models and when would you use them?

Answer: Composite models combine Import and DirectQuery storage modes:

           Benefits: Real-time data with cached aggregations

           Use cases: Large datasets needing real-time updates

           Dual storage mode: Tables can use either mode as needed

           Aggregations: Pre-calculated summaries for performance

21. How do you implement advanced DAX patterns like SUMX and CALCULATE?

Answer:

// SUMX - Iterator function
Total Profit = SUMX(Sales, Sales[Quantity] * Sales[Unit Price])

// CALCULATE with complex filters
Filtered Sales =
CALCULATE(
    [Total Sales],
    Products[Category] = "Electronics",
    Dates[Year] = 2023,
    Customers[Region] <> "Internal"
)

22. Explain Power BI’s data modeling best practices.

Answer:

1.         Use star schema design

2.         Create proper date tables

3.         Remove unnecessary columns

4.         Use appropriate data types

5.         Implement proper relationships

6.         Use measures instead of calculated columns

7.         Optimize for performance

8.         Document the model

23. How do you handle error handling in Power Query?

Answer:

// Error handling in M
let
    Source = try Excel.Workbook(File.Contents("data.xlsx"))
             otherwise null,
    Result = if Source = null
             then #table({"Error"}, {{"File not found"}})
             else Source
in
    Result

24. What are the different ways to publish and share Power BI content?

Answer:

1.         Workspaces: Collaborate with team members

2.         Apps: Distribute content to broader audience

3.         Public web: Share publicly (limited features)

4.         SharePoint Online: Embed in SharePoint pages

5.         Teams integration: Share in Microsoft Teams

6.         Email subscriptions: Automated report delivery

7.         Export options: PDF, PowerPoint, Excel

25. How do you implement custom visuals and formatting in Power BI?

Answer:

1.         Custom visuals: Download from AppSource or create custom

2.         Themes: Apply consistent formatting across reports

3.         Conditional formatting: Dynamic formatting based on values

4.         Custom formatting: Format specific visual elements

5.         Bookmarks: Save and apply formatting states

6.         Templates: Create reusable report templates

Complex Questions (20)

26. Design a complex data model for a retail organization with multiple business units and currencies.

Answer: Complex retail data model design:

1.         Fact Tables: Sales, Inventory, Returns, Promotions

2.         Dimension Tables: Products, Customers, Stores, Time, Geography

3.         Currency Handling: Currency dimension with exchange rates

4.         Business Units: Separate fact tables or additional dimensions

5.         Hierarchies: Product categories, geographic hierarchies

6.         Slowly Changing Dimensions: Customer address changes

7.         Relationships: Proper cardinality and filter directions

8.         Performance: Aggregation tables for large datasets

27. Implement a sophisticated time intelligence solution with fiscal calendar and multiple date contexts.

Answer: Advanced time intelligence:

// Fiscal year calculation
Fiscal Year =
VAR FiscalMonthStart = 7  // July start
RETURN
IF(
    MONTH(Dates[Date]) >= FiscalMonthStart,
    YEAR(Dates[Date]) + 1,
    YEAR(Dates[Date])
)

// Multiple date context measure
Sales by Ship Date vs Order Date =
CALCULATE(
    [Total Sales],
    USERELATIONSHIP(Sales[ShipDate], Dates[Date])
)

28. How do you implement complex security models with dynamic row-level security?

Answer: Dynamic RLS implementation:

1.         Security tables: User-permission mapping tables

2.         Dynamic filters: DAX expressions using LOOKUPVALUE

3.         Multiple security dimensions: Geography, product, time-based

4.         Inheritance models: Hierarchical security structures

5.         Testing framework: Validate security implementations

// Dynamic RLS filter
Territory Filter =
VAR CurrentUser = USERPRINCIPALNAME()
VAR UserTerritories =
    CALCULATETABLE(
        VALUES(UserSecurity[Territory]),
        UserSecurity[UserEmail] = CurrentUser
    )
RETURN
    [Territory] IN UserTerritories

29. Design a real-time analytics dashboard with DirectQuery optimization.

Answer: Real-time dashboard optimization:

1.         Data source optimization: Optimize database for DirectQuery

2.         Model design: Minimize table count and relationships

3.         DAX optimization: Simple measures and avoid complex calculations

4.         Visual optimization: Limit visuals and data points

5.         Caching strategy: Use aggregations where possible

6.         Performance monitoring: Track query performance

7.         User education: Train users on performance implications

30. Implement a comprehensive data governance framework in Power BI.

Answer: Data governance framework:

1.         Certification process: Validate and certify datasets

2.         Endorsement system: Promote trusted content

3.         Lineage tracking: Data source to report lineage

4.         Impact analysis: Understand downstream dependencies

5.         Sensitivity labels: Classify and protect sensitive data

6.         Usage monitoring: Track content usage and adoption

7.         Documentation standards: Consistent metadata and descriptions

31. How do you handle complex calculations across multiple fact tables?

Answer: Multi-fact table calculations:

// Cross-fact table calculation
Budget vs Actual =
VAR ActualSales = SUM(Sales[Amount])
VAR BudgetAmount =
    CALCULATE(
        SUM(Budget[Amount]),
        TREATAS(VALUES(Sales[Date]), Budget[Date]),
        TREATAS(VALUES(Sales[ProductID]), Budget[ProductID])
    )
RETURN
    ActualSales - BudgetAmount

32. Design a machine learning integration with Power BI for predictive analytics.

Answer: ML integration approach:

1.         Azure ML integration: Connect to Azure Machine Learning models

2.         Cognitive Services: Built-in AI capabilities (sentiment, key phrases)

3.         Python/R integration: Custom ML models in Power BI

4.         Automated ML: Use AutoML for simple predictions

5.         Real-time scoring: Score data in real-time

6.         Model management: Version control and deployment

7.         Visualization: Present ML results effectively

33. Implement a complex budgeting and forecasting solution in Power BI.

Answer: Budgeting solution design:

1.         What-if parameters: Interactive scenario modeling

2.         Variance analysis: Budget vs actual comparisons

3.         Forecasting models: Trend and seasonal forecasting

4.         Rolling forecasts: Dynamic forecast periods

5.         Version control: Track budget versions over time

6.         Approval workflows: Power Platform integration

7.         Drill-through analysis: Detailed variance explanations

34. How do you implement advanced data quality monitoring in Power BI?

Answer: Data quality framework:

1.         Data profiling: Automated data quality checks

2.         Quality metrics: Completeness, accuracy, consistency measures

3.         Exception reporting: Highlight data quality issues

4.         Trend analysis: Monitor quality over time

5.         Alerting system: Notify stakeholders of quality issues

6.         Root cause analysis: Track quality to source systems

7.         Continuous monitoring: Real-time quality assessment

35. Design a multi-tenant Power BI solution for a SaaS platform.

Answer: Multi-tenant architecture:

1.         Tenant isolation: Separate workspaces per tenant

2.         Shared datasets: Common data model with tenant filtering

3.         Dynamic security: Tenant-aware row-level security

4.         Automated provisioning: Programmatic workspace creation

5.         Performance isolation: Dedicated capacity planning

6.         Customization: Tenant-specific branding and features

7.         Cost allocation: Track usage per tenant

36. Implement a sophisticated alerting and notification system.

Answer: Advanced alerting system:

1.         Data alerts: Threshold-based notifications

2.         Power Automate integration: Custom notification workflows

3.         Conditional logic: Complex alert conditions

4.         Escalation procedures: Multi-level alert routing

5.         Performance alerts: System performance monitoring

6.         Mobile notifications: Push notifications to mobile apps

7.         Alert management: Snooze, acknowledge, and track alerts

37. How do you handle complex data transformations in Power Query?

Answer: Advanced Power Query transformations:

// Custom function for data transformation
CleanAndTransform = (table as table) as table =>
let
    CleanedData = Table.TransformColumns(table,
        {{"Amount", each if _ < 0 then 0 else _}}),
    AddedColumns = Table.AddColumn(CleanedData,
        "Category", each if [Amount] > 1000 then "High" else "Low")
in
    AddedColumns

38. Design a comprehensive performance monitoring solution for Power BI.

Answer: Performance monitoring framework:

1.         Query performance: Track query execution times

2.         Dataset refresh: Monitor refresh success and duration

3.         User activity: Track report usage and adoption

4.         Capacity monitoring: Monitor Premium capacity utilization

5.         Error tracking: Log and analyze error patterns

6.         Performance trends: Historical performance analysis

7.         Optimization recommendations: Automated performance suggestions

39. Implement a complex financial consolidation model in Power BI.

Answer: Financial consolidation design:

1.         Entity hierarchy: Parent-child relationships

2.         Elimination entries: Intercompany eliminations

3.         Currency conversion: Multi-currency consolidation

4.         Ownership percentages: Minority interest calculations

5.         Consolidation rules: Complex business rules

6.         Audit trails: Track all consolidation adjustments

7.         Regulatory reporting: Meet financial reporting standards

40. How do you integrate Power BI with other Microsoft ecosystem tools?

Answer: Microsoft ecosystem integration:

1.         Excel integration: Analyze in Excel, Excel data sources

2.         SharePoint: Embed reports, list data sources

3.         Teams: Embed reports and dashboards

4.         Power Platform: Power Apps and Power Automate integration

5.         Azure services: Azure SQL, Analysis Services, Data Factory

6.         Office 365: Outlook, OneNote integration

7.         Dynamics 365: CRM and ERP data integration

41. Design a data lake analytics solution using Power BI and Azure.

Answer: Data lake analytics architecture:

1.         Azure Data Lake: Store raw and processed data

2.         Azure Synapse: Data transformation and processing

3.         Power BI DirectQuery: Connect to Synapse pools

4.         Data modeling: Optimize for analytics workloads

5.         Performance tuning: Partition and index strategies

6.         Security: End-to-end data security

7.         Cost optimization: Balance performance and cost

42. Implement a comprehensive metadata management solution.

Answer: Metadata management framework:

1.         Data dictionary: Centralized metadata repository

2.         Lineage tracking: End-to-end data lineage

3.         Impact analysis: Change impact assessment

4.         Documentation standards: Consistent metadata practices

5.         Automated discovery: Scan and catalog data assets

6.         Business glossary: Business term definitions

7.         Governance workflows: Metadata approval processes

43. How do you handle complex hierarchical data in Power BI?

Answer: Hierarchical data handling:

// Parent-child hierarchy
PATH_Function = PATH(Employees[EmployeeID], Employees[ManagerID])

// Hierarchy aggregation
Total_Team_Sales =
SUMX(
    PATHCONTAINS(Employees[Path], Employees[EmployeeID]),
    [Individual_Sales]
)

44. Design a disaster recovery and business continuity solution for Power BI.

Answer: DR/BC solution:

1.         Backup strategies: Export and backup Power BI content

2.         Version control: Git integration for source control

3.         Documentation: Comprehensive system documentation

4.         Recovery procedures: Step-by-step recovery processes

5.         Testing: Regular DR testing and validation

6.         Alternative access: Mobile and web accessibility

7.         Communication plans: Incident communication procedures

45. Implement a sophisticated customer analytics solution.

Answer: Customer analytics framework:

1.         Customer 360: Unified customer view

2.         Behavioral analytics: Customer journey mapping

3.         Segmentation: Dynamic customer segmentation

4.         Predictive analytics: Churn and lifetime value prediction

5.         Real-time updates: Near real-time customer data

6.         Personalization: Tailored analytics per user segment

7.         Performance tracking: Customer metric monitoring

Project-Based Real World Questions (5)

46. You’re tasked with building a complete financial reporting solution for a multinational corporation. Walk through your approach.

Answer: Financial reporting solution:

1.         Requirements analysis: Understand reporting needs and regulations

2.         Data architecture: Design consolidated data model

3.         Source integration: Connect to ERP, GL, and subsidiary systems

4.         Currency handling: Multi-currency conversion and reporting

5.         Consolidation logic: Implement complex consolidation rules

6.         Report development: P&L, Balance Sheet, Cash Flow statements

7.         Security implementation: Role-based access to financial data

8.         Audit trails: Comprehensive logging and documentation

9.         Performance optimization: Ensure fast report generation

10.     Training and adoption: Finance team training and support

47. Design and implement a real-time operations dashboard for a manufacturing company.

Answer: Manufacturing operations dashboard:

1.         Real-time data integration: Connect to SCADA, MES, and ERP systems

2.         KPI framework: OEE, quality metrics, production targets

3.         Alert system: Real-time alerts for production issues

4.         Trend analysis: Historical performance and forecasting

5.         Drill-down capabilities: From plant to line to machine level

6.         Mobile accessibility: Shop floor mobile dashboards

7.         Performance optimization: Handle high-frequency data updates

8.         Integration: Connect with maintenance and quality systems

9.         User training: Operations team dashboard training

10.     Continuous improvement: Iterative enhancement based on feedback

48. Build a comprehensive customer analytics platform for an e-commerce company.

Answer: E-commerce customer analytics:

1.         Data integration: Website, mobile app, CRM, and transaction data

2.         Customer 360: Unified customer profile and journey

3.         Behavioral analytics: Purchase patterns and preferences

4.         Segmentation: Dynamic customer segmentation and targeting

5.         Predictive analytics: Churn prediction and recommendation engine

6.         Real-time personalization: Dynamic content and pricing

7.         Performance tracking: Customer acquisition and retention metrics

8.         A/B testing: Experiment tracking and analysis

9.         Mobile analytics: Mobile app usage and performance

10.     Privacy compliance: GDPR and data privacy controls

49. Create a supply chain analytics solution for a global logistics company.

Answer: Supply chain analytics platform:

1.         End-to-end visibility: Track goods from origin to destination

2.         Real-time tracking: GPS and IoT sensor data integration

3.         Performance metrics: On-time delivery, cost per shipment

4.         Predictive analytics: Demand forecasting and route optimization

5.         Risk management: Supply chain risk assessment and mitigation

6.         Supplier analytics: Supplier performance and scorecards

7.         Cost optimization: Transportation and inventory cost analysis

8.         Compliance reporting: Regulatory and sustainability reporting

9.         Mobile access: Field team mobile dashboards

10.     Integration: ERP, WMS, and TMS system integration

50. Design a complete healthcare analytics solution for a hospital network.

Answer: Healthcare analytics platform:

1.         Clinical analytics: Patient outcomes and quality metrics

2.         Operational efficiency: Bed utilization and staff scheduling

3.         Financial performance: Revenue cycle and cost management

4.         Population health: Community health trends and outcomes

5.         Regulatory compliance: HIPAA compliance and reporting

6.         Real-time monitoring: Patient flow and emergency metrics

7.         Predictive analytics: Readmission risk and resource planning

8.         Quality improvement: Clinical pathway optimization

9.         Patient satisfaction: Survey analysis and improvement tracking

10.     Data security: Comprehensive security and audit controls

Optimization Questions (5)

51. A Power BI report with 50+ visuals is performing poorly. How do you optimize it?

Answer: Report performance optimization:

1.         Visual reduction: Consolidate or remove unnecessary visuals

2.         Page optimization: Spread visuals across multiple pages

3.         Data model: Optimize relationships and data types

4.         DAX optimization: Simplify measures and calculations

5.         Import optimization: Use import mode instead of DirectQuery

6.         Aggregations: Create aggregation tables for large datasets

7.         Performance analyzer: Use built-in performance tools

8.         User training: Educate users on performance best practices

52. How do you optimize Power BI for a dataset with 10+ million rows?

Answer: Large dataset optimization:

1.         Import strategies: Use incremental refresh

2.         Data reduction: Remove unnecessary columns and rows

3.         Aggregation tables: Pre-calculate common aggregations

4.         Composite models: Combine import and DirectQuery

5.         Partitioning: Implement table partitioning

6.         Compression: Optimize data types for better compression

7.         Premium capacity: Use dedicated capacity for large datasets

8.         User education: Train users on large dataset implications

53. Your DirectQuery reports are too slow. What optimization strategies do you implement?

Answer: DirectQuery optimization:

1.         Data source optimization: Optimize underlying database

2.         Query folding: Ensure transformations can be pushed to source

3.         Relationship optimization: Minimize complex relationships

4.         DAX simplification: Use simple aggregations

5.         Visual optimization: Reduce data points in visuals

6.         Indexing: Ensure proper database indexing

7.         Aggregations: Use aggregation tables for performance

8.         Monitoring: Track query performance continuously

54. Optimize a Power BI solution for global users across different time zones.

Answer: Global optimization strategy:

1.         Regional gateways: Deploy gateways closer to data sources

2.         Content distribution: Replicate content across regions

3.         Caching optimization: Leverage query result caching

4.         Time zone handling: Proper UTC and local time handling

5.         Language localization: Multi-language support

6.         Performance monitoring: Track performance by region

7.         Mobile optimization: Optimize for mobile access

8.         User training: Region-specific training and support

55. How do you optimize Power BI for cost efficiency in a Premium capacity?

Answer: Cost optimization strategy:

1.         Capacity monitoring: Track CPU and memory usage

2.         Workload optimization: Balance workloads across capacity

3.         Refresh scheduling: Optimize refresh schedules

4.         Storage optimization: Manage dataset storage efficiently

5.         User training: Educate users on resource consumption

6.         Performance tuning: Optimize reports and datasets

7.         Scaling strategies: Scale capacity based on demand

8.         Cost monitoring: Track and alert on capacity costs

Cost Saving and Best Practices Questions (5)

56. What are the key strategies for minimizing Power BI licensing and infrastructure costs?

Answer: Cost minimization strategies:

1.         License optimization: Right-size Pro vs Premium licensing

2.         Capacity planning: Optimize Premium capacity utilization

3.         Content sharing: Use apps instead of individual sharing

4.         Dataset optimization: Reduce dataset size and complexity

5.         Refresh optimization: Schedule refreshes efficiently

6.         Storage management: Clean up unused content regularly

7.         User training: Educate users on cost implications

8.         Monitoring: Track usage and costs continuously

57. Describe best practices for Power BI data modeling and report design.

Answer: Best practices framework:

1.         Star schema design: Use dimensional modeling principles

2.         Proper relationships: Implement correct cardinality

3.         Data type optimization: Use appropriate data types

4.         Measure vs calculated columns: Use measures for aggregations

5.         Naming conventions: Consistent and descriptive naming

6.         Documentation: Comprehensive model documentation

7.         Version control: Implement source control processes

8.         Testing procedures: Validate model changes thoroughly

58. What are the security best practices for Power BI implementations?

Answer: Security best practices:

1.         Row-level security: Implement appropriate RLS

2.         Workspace security: Use proper workspace roles

3.         Data source security: Secure underlying data sources

4.         Sensitivity labels: Classify and protect sensitive data

5.         Audit logging: Enable comprehensive audit logging

6.         Regular reviews: Periodic access reviews and cleanup

7.         Training: Security awareness training for users

8.         Incident response: Security incident procedures

59. How do you implement effective governance and administration for Power BI?

Answer: Governance framework:

1.         Center of Excellence: Establish BI CoE

2.         Standards and guidelines: Development and design standards

3.         Certification process: Content certification procedures

4.         Monitoring and compliance: Usage monitoring and compliance

5.         Training programs: Comprehensive user training

6.         Support structure: Tiered support model

7.         Change management: Controlled change processes

8.         Performance monitoring: Continuous performance tracking

60. What are the key considerations for Power BI capacity planning and scaling?

Answer: Capacity planning considerations:

1.         Usage analysis: Understand current and projected usage

2.         Performance requirements: Define performance SLAs

3.         Growth planning: Plan for user and data growth

4.         Workload distribution: Balance workloads across capacity

5.         Peak load planning: Handle peak usage periods

6.         Cost optimization: Balance performance and cost

7.         Monitoring strategy: Continuous capacity monitoring

8.         Scaling procedures: Automated and manual scaling options


Additional Resources

Essential DAX Functions for Interviews

// Time intelligence
TOTALYTD([Sales], Dates[Date])
SAMEPERIODLASTYEAR(Dates[Date])
DATEADD(Dates[Date], -1, YEAR)

// Filter functions
CALCULATE([Sales], Products[Category] = "Electronics")
ALL(Table)
FILTER(Table, Condition)

// Iterator functions
SUMX(Table, Expression)
AVERAGEX(Table, Expression)

// Relationship functions
RELATED(Table[Column])
RELATEDTABLE(Table)
USERELATIONSHIP(Table1[Column], Table2[Column])

Power Query M Functions

// Data transformation
Table.TransformColumns(table, {{"Column", each Text.Upper(_)}})
Table.AddColumn(table, "NewColumn", each [Column1] + [Column2])
Table.SelectColumns(table, {"Column1", "Column2"})

// Data cleaning
Table.RemoveBlankRows(table)
Table.ReplaceValue(table, "Old", "New", Replacer.ReplaceText)

Performance Optimization Checklist

           Use appropriate data types

           Remove unnecessary columns

           Implement proper relationships

           Use measures instead of calculated columns

           Optimize DAX calculations

           Limit visuals per page

           Use aggregation tables

           Monitor query performance

Common Interview Scenarios

           Financial reporting and consolidation

           Sales and marketing analytics

           Operational dashboards

           Customer analytics

           Supply chain analytics

           Real-time monitoring

           Multi-tenant solutions

           Global deployments

This comprehensive guide covers all aspects of Power BI, DAX, and Power Query from basic concepts to advanced enterprise implementations. Focus on understanding the underlying principles and be prepared to explain your design decisions and optimization strategies.

No comments:

Post a Comment

Complete Data Engineering & BI Interview Preparation Guides

Complete Data Engineering & BI Interview Preparation Guides 📌 Data Engineering &...