Databricks Certified Data Engineer Professional Complete Study Guide 2025

Databricks Certified Data Engineer Professional Study Guide 2025

Databricks Certified Data Engineer Professional Complete Study Guide 2025

Master the Professional Level Exam with Our Comprehensive Study Plan

Databricks Certified Data Engineer Professional Certification Syllabus

Exam Overview

  • Certification Level: Professional
  • Format: Multiple-choice questions
  • Duration: 120 minutes
  • Number of Questions: 59 scored questions
  • Passing Score: ~70% (community reports ~80%)
  • Recommended Experience: 1+ years hands-on data engineering on Databricks
  • Delivery: Online proctored
  • Validity: 2 years
  • Cost: $200 USD

Important Note

The Databricks Certified Data Engineer Professional exam validates advanced skills in building, optimizing, and maintaining production-grade data engineering solutions on the Databricks Lakehouse Platform. Successful candidates demonstrate expertise across Delta Lake, Unity Catalog, Auto Loader, LakeFlow Declarative Pipelines, and the Medallion Architecture .

Exam Domains and Weightings

The Databricks Certified Data Engineer Professional exam covers ten main domains with the following approximate weightings :

  1. Developing Code for Data Processing using Python and SQL (22%) - Writing transformations, using Spark API, UDFs, streaming, etc.
  2. Data Ingestion & Acquisition (7%) - Ingestion methods: batch, streaming, Auto Loader, external systems etc.
  3. Data Transformation, Cleansing, and Quality (10%) - Data cleaning, transformations, validation, quality checks etc.
  4. Data Sharing and Federation (5%) - Sharing data across systems, federated queries etc.
  5. Monitoring and Alerting (10%) - Observability, metrics, alerts on data pipelines, logs, dashboards etc.
  6. Cost & Performance Optimization (13%) - Tuning, partitioning, caching, resource usage, caching, cost trade-offs etc.
  7. Ensuring Data Security and Compliance (10%) - ACLs, encryption, row/column level security, compliance controls etc.
  8. Data Governance (7%) - Catalogs, lineage, data policies, metadata, data stewardship etc.
  9. Debugging and Deploying (10%) - Debugging pipelines, error handling, deployment strategies, CI/CD etc.
  10. Data Modeling (6%) - Modeling data for analytics: schemas, slowly changing dimensions, star schemas etc.

Key Topics Covered

Data Processing & Spark Programming:

  • PySpark DataFrame API and Spark SQL optimizations
  • Structured Streaming with fault tolerance and exactly-once processing
  • User Defined Functions (UDFs) and Pandas UDFs
  • Delta Lake operations: MERGE, OPTIMIZE, ZORDER, VACUUM
  • Change Data Capture (CDC) using Delta Live Tables

Data Ingestion & Integration:

  • Auto Loader for incremental file processing
  • Apache Kafka and Kinesis streaming integration
  • Batch ingestion methods and scheduling
  • LakeFlow Connect managed and standard connectors
  • Cloud storage integration (S3, ADLS, GCS)

Data Transformation & Quality:

  • Data validation and quality frameworks
  • Complex data cleansing operations
  • Incremental processing and deduplication
  • Schema evolution and management
  • Data lineage and provenance

Performance Optimization:

  • Query optimization and Spark UI analysis
  • Data skipping with ZORDER clustering
  • Partitioning strategies and predicate pushdown
  • Cost management and resource optimization
  • Caching strategies and memory management

Security & Governance:

  • Unity Catalog for centralized governance
  • Row-level and column-level security
  • Data masking and encryption
  • Access control lists and role-based permissions
  • Compliance frameworks and auditing

Data Modeling & Architecture:

  • Medallion Architecture (Bronze, Silver, Gold layers)
  • Slowly Changing Dimensions (SCD) patterns
  • Star and snowflake schemas for analytics
  • Data vault modeling techniques
  • Time-series data modeling

Monitoring & Operations:

  • Pipeline observability and metrics
  • Alert configuration and notification systems
  • Log analysis and debugging techniques
  • Performance monitoring and bottleneck identification
  • Resource utilization tracking

Deployment & CI/CD:

  • Databricks Asset Bundles for deployment automation
  • Git integration with Databricks Repos
  • Testing frameworks and data validation
  • Environment promotion strategies
  • Infrastructure as Code (IaC) practices

Primary Study Resources

Official Databricks Resources:

Databricks Certified Data Engineer Professional

Official exam guide and certification details

Exam Details
Databricks SQL Connector for Python

Official documentation for Python SQL connectivity

Connector Docs
Lakeflow Connect & Ingestion

Standard and managed connectors for data ingestion

Ingestion Guide
Databricks Notebook Development

Developing code in Databricks notebooks

Notebook Docs
Data Engineering with Databricks

Official training and learning paths

Training Portal
Unity Catalog Documentation

Data governance and access control

Governance Docs

Recommended Training & Practice:

Advanced Data Engineering with Databricks

Instructor-led course for professional certification

Course Details
Databricks Streaming and Delta Live Tables

Self-paced course on streaming and DLT

Streaming Course
Databricks Performance Optimization

Performance tuning and optimization techniques

Performance Course
Automated Deployment with Databricks Asset Bundle

CI/CD and deployment automation

Deployment Course

14-Day Intensive Study Plan

Follow this accelerated timeline to prepare for your Databricks Data Engineer Professional certification in two weeks:

Study Progress Tracker

Progress: 0% Complete

Day 1: Platform Fundamentals & Architecture (6 hours)

Objectives:

  • Understand Databricks Lakehouse Platform architecture
  • Learn Unity Catalog fundamentals and data governance
  • Review exam structure and domains
  • Set up Databricks workspace and clusters

Resources:

  • Databricks Platform Documentation
  • Unity Catalog Guide
  • Official Certification Portal

Practice Examples:

-- Unity Catalog setup and basic operations CREATE CATALOG IF NOT EXISTS production; USE CATALOG production; CREATE SCHEMA IF NOT EXISTS bronze_data; USE SCHEMA bronze_data; -- Create managed table in Unity Catalog CREATE TABLE sales_raw ( id INT, transaction_date TIMESTAMP, amount DECIMAL(10,2), customer_id INT, region STRING ) USING DELTA; -- Grant permissions GRANT USAGE ON CATALOG production TO DATA_ENGINEERS; GRANT USE SCHEMA ON SCHEMA bronze_data TO DATA_ENGINEERS;
Day 2: PySpark & Data Processing Fundamentals (7 hours)

Objectives:

  • Master PySpark DataFrame API
  • Learn Spark SQL optimizations
  • Practice UDFs and Pandas UDFs
  • Understand execution plans

Resources:

  • PySpark Documentation
  • Spark SQL Language Reference
  • Databricks Notebook Examples

Practice Examples:

# PySpark DataFrame operations from pyspark.sql import SparkSession from pyspark.sql.functions import * from pyspark.sql.types import * # Create Spark session spark = SparkSession.builder.appName("DataProcessing").getOrCreate() # Read data with schema enforcement schema = StructType([ StructField("id", IntegerType(), True), StructField("name", StringType(), True), StructField("salary", DoubleType(), True), StructField("department", StringType(), True) ]) df = spark.read.schema(schema).csv("/mnt/data/employees.csv") # Complex transformations processed_df = (df .filter(col("salary") > 50000) .withColumn("bonus", col("salary") * 0.1) .withColumn("total_comp", col("salary") + col("bonus")) .groupBy("department") .agg( avg("total_comp").alias("avg_comp"), sum("total_comp").alias("total_dept_comp"), count("*").alias("employee_count") ) ) # UDF example @udf(returnType=StringType()) def salary_category(salary): if salary < 50000: return "Junior" elif salary < 100000: return "Mid" else: return "Senior" df_with_category = df.withColumn("category", salary_category(col("salary")))
Day 3: Data Ingestion & Auto Loader (6 hours)

Objectives:

  • Master Auto Loader for incremental ingestion
  • Learn batch ingestion patterns
  • Understand LakeFlow Connect connectors
  • Practice streaming ingestion

Resources:

  • Auto Loader Documentation
  • LakeFlow Connect Guide
  • Structured Streaming Examples

Practice Examples:

# Auto Loader for incremental file processing from pyspark.sql.streaming import DataStreamReader # Auto Loader configuration for cloud files streaming_df = (spark.readStream .format("cloudFiles") .option("cloudFiles.format", "json") .option("cloudFiles.schemaLocation", "/tmp/schema_location") .option("cloudFiles.inferColumnTypes", "true") .load("/mnt/raw-data/") ) # Write stream to Delta table (streaming_df.writeStream .format("delta") .option("checkpointLocation", "/tmp/checkpoint") .table("bronze_data.raw_events") ) # Batch ingestion with COPY INTO -- COPY INTO for idempotent batch loads COPY INTO bronze_data.sales_data FROM '/mnt/external/sales/' FILEFORMAT = PARQUET PATTERN = '*.parquet' COPY_OPTIONS ('mergeSchema' = 'true'); # Kafka streaming ingestion kafka_df = (spark.readStream .format("kafka") .option("kafka.bootstrap.servers", "host1:port1,host2:port2") .option("subscribe", "topic1") .option("startingOffsets", "latest") .load() )
Day 4: Delta Lake & Advanced Operations (7 hours)

Objectives:

  • Master Delta Lake ACID transactions
  • Learn MERGE, UPDATE, DELETE operations
  • Understand time travel and versioning
  • Practice OPTIMIZE and ZORDER

Resources:

  • Delta Lake Documentation
  • Delta Lake API Reference
  • Performance Tuning Guide

Practice Examples:

-- Delta Lake MERGE operation (UPSERT) MERGE INTO silver_data.customers AS target USING ( SELECT customer_id, customer_name, email, updated_at, operation FROM bronze_data.customers_staging WHERE operation IN ('INSERT', 'UPDATE') ) AS source ON target.customer_id = source.customer_id WHEN MATCHED AND source.operation = 'UPDATE' THEN UPDATE SET * WHEN NOT MATCHED AND source.operation = 'INSERT' THEN INSERT * -- Time travel queries SELECT * FROM silver_data.customers TIMESTAMP AS OF '2025-01-01' SELECT * FROM silver_data.customers VERSION AS OF 12 -- Delta table maintenance OPTIMIZE silver_data.customers ZORDER BY (customer_id, region) -- VACUUM to remove old files VACUUM silver_data.customers RETAIN 168 HOURS -- Change Data Feed (CDF) SELECT * FROM table_changes('silver_data.customers', 10, 15) -- Streaming from Delta table with CDF (spark.readStream .format("delta") .option("readChangeFeed", "true") .table("silver_data.customers") )
Day 5: Data Transformation & Quality (6 hours)

Objectives:

  • Implement data quality checks
  • Learn data validation patterns
  • Practice complex transformations
  • Understand schema evolution

Resources:

  • Data Quality Framework Docs
  • Schema Evolution Guide
  • Expectations Library

Practice Examples:

# Data quality checks with expectations from databricks.feature_store import Expectation # Define data quality expectations expectations = [ Expectation("valid_amount", "amount IS NOT NULL AND amount > 0"), Expectation("valid_date", "transaction_date >= '2020-01-01'"), Expectation("unique_ids", "id IS NOT NULL AND id > 0") ] # Apply expectations to DataFrame validated_df = (df .expect_all(expectations) .when_failed_drop() # or .when_failed_fail() ) # Complex data cleansing cleansed_df = (df .filter(col("status") == "active") .withColumn("email", lower(trim(col("email")))) .withColumn("phone", regexp_replace(col("phone"), "[^0-9]", "")) .withColumn("age", when(col("age").isNull(), lit(0)) .when(col("age") < 0, lit(0)) .when(col("age") > 120, lit(120)) .otherwise(col("age")) ) .dropDuplicates(["user_id", "transaction_date"]) ) # Schema evolution handling evolved_df = (spark.read .format("delta") .option("mergeSchema", "true") .load("/mnt/tables/customer_data") )
Day 6: Medallion Architecture & Data Modeling (7 hours)

Objectives:

  • Implement Bronze, Silver, Gold layers
  • Learn Slowly Changing Dimensions (SCD)
  • Practice star schema modeling
  • Understand data partitioning strategies

Resources:

  • Medallion Architecture Guide
  • Data Modeling Best Practices
  • SCD Type 2 Implementation

Practice Examples:

-- Bronze layer (raw data ingestion) CREATE TABLE bronze_data.sales_raw USING DELTA AS SELECT * FROM read_files('/mnt/raw/sales/*.json'); -- Silver layer (cleansed and validated data) CREATE TABLE silver_data.sales_cleansed USING DELTA AS SELECT id, customer_id, product_id, CAST(amount AS DECIMAL(10,2)) as amount, CAST(transaction_date AS TIMESTAMP) as transaction_date, region, CURRENT_TIMESTAMP() as processed_at FROM bronze_data.sales_raw WHERE amount IS NOT NULL AND transaction_date IS NOT NULL; -- Gold layer (business aggregates) CREATE TABLE gold_data.sales_aggregates USING DELTA PARTITIONED BY (region, year_month) AS SELECT region, DATE_TRUNC('month', transaction_date) as year_month, COUNT(*) as transaction_count, SUM(amount) as total_sales, AVG(amount) as avg_sale_amount, COUNT(DISTINCT customer_id) as unique_customers FROM silver_data.sales_cleansed GROUP BY region, DATE_TRUNC('month', transaction_date); -- SCD Type 2 implementation MERGE INTO gold_data.customers_dim AS target USING ( SELECT customer_id, customer_name, email, address, '2025-01-01' as valid_from, '9999-12-31' as valid_to, TRUE as is_current FROM silver_data.customers_updated ) AS source ON target.customer_id = source.customer_id AND target.is_current = TRUE WHEN MATCHED AND target.email <> source.email THEN UPDATE SET valid_to = CURRENT_DATE(), is_current = FALSE WHEN NOT MATCHED THEN INSERT (customer_id, customer_name, email, address, valid_from, valid_to, is_current) VALUES (source.customer_id, source.customer_name, source.email, source.address, source.valid_from, source.valid_to, source.is_current);
Day 7: Performance Optimization (8 hours)

Objectives:

  • Learn query optimization techniques
  • Master Spark UI and query profiling
  • Practice partitioning and ZORDERing
  • Understand cost management

Resources:

  • Spark UI Documentation
  • Performance Tuning Guide
  • Cost Optimization Best Practices

Practice Examples:

-- Performance optimization techniques -- Create optimized table with partitioning and ZORDER CREATE TABLE gold_data.optimized_sales USING DELTA PARTITIONED BY (sale_year, sale_month) TBLPROPERTIES ( 'delta.autoOptimize.optimizeWrite' = 'true', 'delta.autoOptimize.autoCompact' = 'true' ) AS SELECT *, YEAR(transaction_date) as sale_year, MONTH(transaction_date) as sale_month FROM silver_data.sales_cleansed; -- Optimize existing table OPTIMIZE gold_data.optimized_sales ZORDER BY (customer_id, product_id, region); -- Analyze table statistics ANALYZE TABLE gold_data.optimized_sales COMPUTE STATISTICS FOR ALL COLUMNS; -- Show table details for optimization DESCRIBE DETAIL gold_data.optimized_sales; -- Check file layout for optimization SELECT * FROM delta_file_snapshot('gold_data.optimized_sales'); # PySpark performance configurations # Enable adaptive query execution spark.conf.set("spark.sql.adaptive.enabled", "true") spark.conf.set("spark.sql.adaptive.coalescePartitions.enabled", "true") spark.conf.set("spark.sql.adaptive.skew.enabled", "true") # Enable Delta cache spark.conf.set("spark.databricks.io.cache.enabled", "true") # Optimize shuffle partitions spark.conf.set("spark.sql.adaptive.coalescePartitions.initialPartitionNum", "1000") spark.conf.set("spark.sql.adaptive.advisoryPartitionSizeInBytes", "64MB")
Day 8: Security & Data Governance (6 hours)

Objectives:

  • Master Unity Catalog security
  • Learn row and column level security
  • Practice data masking and encryption
  • Understand compliance frameworks

Resources:

  • Unity Catalog Security Guide
  • Data Governance Documentation
  • Compliance Framework Docs

Practice Examples:

-- Unity Catalog security implementation -- Create roles and grants CREATE ROLE data_engineer; CREATE ROLE data_analyst; CREATE ROLE data_scientist; -- Grant catalog permissions GRANT USE CATALOG ON CATALOG production TO data_engineer; GRANT USE SCHEMA ON SCHEMA silver_data TO data_engineer; GRANT SELECT ON ALL TABLES IN SCHEMA silver_data TO data_analyst; -- Row level security with dynamic views CREATE VIEW silver_data.sales_regional AS SELECT * FROM silver_data.sales_cleansed WHERE region IN ( SELECT region FROM current_user_regions WHERE user_email = current_user() ); -- Column level security with masking CREATE VIEW silver_data.sales_masked AS SELECT id, customer_id, amount, transaction_date, region, CASE WHEN is_member('hr_team') THEN customer_name ELSE '***MASKED***' END as customer_name, CASE WHEN is_member('finance_team') THEN email ELSE regexp_replace(email, '(.).*@', '***@') END as email FROM silver_data.sales_cleansed; -- Data lineage tracking -- Unity Catalog automatically tracks lineage for tables and views -- Query lineage information SELECT * FROM system.information_schema.table_lineage;
Day 9: Monitoring & Alerting (5 hours)

Objectives:

  • Implement pipeline monitoring
  • Learn alert configuration
  • Practice log analysis
  • Understand observability patterns

Resources:

  • Monitoring & Alerting Documentation
  • Observability Best Practices
  • Log Analysis Guide

Practice Examples:

-- Monitor Delta table changes and metrics -- Check table history for changes DESCRIBE HISTORY gold_data.sales_aggregates; -- Monitor streaming progress SELECT * FROM stream_reads('gold_data.sales_stream'); -- Check query history and performance SELECT query_text, user_name, execution_time, read_bytes, write_bytes, status FROM system.query.history WHERE start_time > CURRENT_DATE() - INTERVAL 1 DAY ORDER BY execution_time DESC; -- Set up alerts for data quality CREATE ALERT data_freshness_alert ON gold_data.sales_aggregates CONDITION: MAX(transaction_date) < CURRENT_DATE() - INTERVAL 1 DAY ACTION: SEND_EMAIL('data-team@company.com', 'Data Freshness Alert'); -- Monitor cluster performance SELECT cluster_id, avg(cpu_usage) as avg_cpu, avg(memory_usage) as avg_memory, sum(num_queries) as total_queries FROM system.cluster.usage WHERE start_time > CURRENT_DATE() - INTERVAL 7 DAYS GROUP BY cluster_id; # Python monitoring with custom metrics from databricks.sdk import WorkspaceClient from databricks.sdk.service import jobs def monitor_pipeline_health(): w = WorkspaceClient() # Get recent run details runs = w.jobs.list_runs( job_id=12345, limit=10, expand_tasks=True ) # Check for failures failed_runs = [r for r in runs if r.state.result_state == "FAILED"] if failed_runs: # Send alert send_alert(f"Pipeline failures detected: {len(failed_runs)}") return len(failed_runs)
Day 10: Databricks Workflows & Orchestration (6 hours)

Objectives:

  • Master Workflows configuration
  • Learn task dependencies and scheduling
  • Practice error handling and retries
  • Understand workflow patterns

Resources:

  • Workflows Documentation
  • Orchestration Best Practices
  • Job Scheduling Guide

Practice Examples:

# Workflow configuration with Python API from databricks.sdk import WorkspaceClient from databricks.sdk.service import jobs w = WorkspaceClient() # Create a multi-task workflow pipeline_job = w.jobs.create( name="Medallion Architecture Pipeline", tags={ "environment": "production", "team": "data-engineering" }, tasks=[ jobs.Task( task_key="ingest_bronze", description="Ingest raw data to bronze layer", notebook_task=jobs.NotebookTask( notebook_path="/Workspace/Users/engineer/bronze_ingestion", base_parameters={"source_path": "/mnt/raw/sales/"} ), timeout_seconds=3600, email_notifications=jobs.JobEmailNotifications( on_failure=["engineer@company.com"] ) ), jobs.Task( task_key="transform_silver", description="Transform bronze to silver layer", notebook_task=jobs.NotebookTask( notebook_path="/Workspace/Users/engineer/silver_transformation" ), depends_on=[jobs.TaskDependency(task_key="ingest_bronze")], timeout_seconds=7200 ), jobs.Task( task_key="aggregate_gold", description="Create gold layer aggregates", notebook_task=jobs.NotebookTask( notebook_path="/Workspace/Users/engineer/gold_aggregation" ), depends_on=[jobs.TaskDependency(task_key="transform_silver")], timeout_seconds=3600 ) ], schedule=jobs.CronSchedule( quartz_cron_expression="0 0 6 * * ?", # Daily at 6 AM timezone_id="America/New_York" ), max_concurrent_runs=1 ) # Trigger workflow run programmatically run = w.jobs.run_now(job_id=pipeline_job.job_id)
Day 11: Delta Live Tables (DLT) (6 hours)

Objectives:

  • Master DLT pipeline development
  • Learn expectations and data quality
  • Practice incremental processing
  • Understand DLT orchestration

Resources:

  • DLT Documentation
  • DLT Examples and Patterns
  • Data Quality with DLT

Practice Examples:

# Delta Live Tables pipeline example import dlt from pyspark.sql.functions import * from pyspark.sql.types import * @dlt.table( comment="Raw sales data from source system", table_properties={ "quality": "bronze", "pipelines.autoOptimize.managed": "true" } ) def sales_bronze(): return ( spark.readStream .format("cloudFiles") .option("cloudFiles.format", "json") .option("cloudFiles.schemaLocation", "/tmp/schema/sales_bronze") .load("/mnt/raw/sales/") ) @dlt.table( comment="Cleansed and validated sales data", table_properties={"quality": "silver"} ) @dlt.expect("valid_amount", "amount > 0") @dlt.expect_or_drop("valid_date", "transaction_date IS NOT NULL") @dlt.expect_or_fail("valid_customer", "customer_id IS NOT NULL") def sales_silver(): return ( dlt.read_stream("sales_bronze") .select( col("id").cast("integer"), col("customer_id").cast("integer"), col("product_id").cast("integer"), col("amount").cast("decimal(10,2)"), col("transaction_date").cast("timestamp"), col("region"), current_timestamp().alias("processed_at") ) .dropDuplicates(["id", "transaction_date"]) ) @dlt.table( comment="Aggregated sales data by region and month", table_properties={"quality": "gold"} ) def sales_gold_aggregates(): return ( dlt.read("sales_silver") .groupBy( "region", date_trunc("month", "transaction_date").alias("year_month") ) .agg( sum("amount").alias("total_sales"), avg("amount").alias("avg_sale_amount"), count("*").alias("transaction_count"), countDistinct("customer_id").alias("unique_customers") ) ) @dlt.view( comment="Latest sales data for reporting" ) def sales_current_month(): return ( dlt.read("sales_silver") .filter(col("transaction_date") >= date_sub(current_date(), 30)) )
Day 12: Databricks SQL Connector & APIs (5 hours)

Objectives:

  • Master Databricks SQL Connector for Python
  • Learn REST API integration
  • Practice authentication methods
  • Understand programmatic workflows

Resources:

  • SQL Connector Documentation
  • REST API Reference
  • Authentication Guide

Practice Examples:

# Databricks SQL Connector for Python from databricks import sql import os import pandas as pd # Connection with personal access token with sql.connect( server_hostname=os.getenv("DATABRICKS_SERVER_HOSTNAME"), http_path=os.getenv("DATABRICKS_HTTP_PATH"), access_token=os.getenv("DATABRICKS_TOKEN") ) as connection: with connection.cursor() as cursor: # Execute query with parameters (safe from SQL injection) cursor.execute(""" SELECT region, COUNT(*) as transaction_count, SUM(amount) as total_sales FROM gold_data.sales_aggregates WHERE year_month >= %s GROUP BY region """, ('2025-01-01',)) # Fetch results result = cursor.fetchall() # Convert to pandas DataFrame df = pd.DataFrame(result, columns=[desc[0] for desc in cursor.description]) print(df) # OAuth M2M authentication example from databricks.sdk.core import Config, oauth_service_principal def credential_provider(): config = Config( host=f"https://{os.getenv('DATABRICKS_SERVER_HOSTNAME')}", client_id=os.getenv("DATABRICKS_CLIENT_ID"), client_secret=os.getenv("DATABRICKS_CLIENT_SECRET") ) return oauth_service_principal(config) # Query with tags for tracking with sql.connect( server_hostname=os.getenv("DATABRICKS_SERVER_HOSTNAME"), http_path=os.getenv("DATABRICKS_HTTP_PATH"), access_token=os.getenv("DATABRICKS_TOKEN"), session_configuration={ 'query_tags': 'team:engineering,pipeline:sales_etl,env:prod' } ) as connection: with connection.cursor() as cursor: cursor.execute("SELECT CURRENT_TIMESTAMP() as current_time") result = cursor.fetchone() print(f"Query executed at: {result['current_time']}")
Day 13: CI/CD & Databricks Asset Bundles (6 hours)

Objectives:

  • Master Databricks Asset Bundles
  • Learn Git integration and best practices
  • Practice deployment automation
  • Understand testing strategies

Resources:

  • Asset Bundles Documentation
  • Git Integration Guide
  • CI/CD Best Practices

Practice Examples:

# databricks.yml - Asset Bundle configuration bundle: name: "sales-data-pipeline" include: - "*.yml" targets: development: mode: "development" default: true workspace: host: "https://adb-1234567890123456.7.databricks.com" bundle: git: branch: "main" origin_url: "https://github.com/company/sales-pipeline.git" production: mode: "production" workspace: host: "https://adb-9876543210987654.7.databricks.com" bundle: git: branch: "production" origin_url: "https://github.com/company/sales-pipeline.git" resources: jobs: sales_medallion_pipeline: name: "Sales Medallion Pipeline" tasks: - task_key: "ingest_bronze" job_cluster_key: "main_cluster" notebook_task: notebook_path: "../src/bronze/ingest_sales.py" libraries: - notebook: path: "../src/bronze/ingest_sales.py" pipelines: sales_dlt_pipeline: name: "Sales DLT Pipeline" development: true continuous: false clusters: - label: "default" num_workers: 2 libraries: - notebook: path: "../src/dlt/sales_pipeline.py" # GitHub Actions workflow for CI/CD name: Deploy to Databricks on: push: branches: [ main, production ] jobs: deploy: runs-on: ubuntu-latest steps: - uses: actions/checkout@v3 - name: Deploy to Databricks uses: databricks/deploy-databricks-asset-bundle@v1 with: bundle: sales-data-pipeline target: ${{ github.ref == 'refs/heads/production' && 'production' || 'development' }} env: DATABRICKS_HOST: ${{ secrets.DATABRICKS_HOST }} DATABRICKS_TOKEN: ${{ secrets.DATABRICKS_TOKEN }}
Day 14: Final Review & Mock Exams (8 hours)

Objectives:

  • Complete comprehensive practice exams
  • Review weak areas and domains
  • Final documentation review
  • Schedule certification exam

Resources:

  • Free Practice Test (provided link)
  • Official Exam Guide Review
  • Domain-specific quick references

Final Checklist:

  • ✓ Completed all 10 exam domains
  • ✓ Scored 80%+ on practice tests
  • ✓ Hands-on practice with all key features
  • ✓ Reviewed weak areas thoroughly
  • ✓ Scheduled certification exam

Key Patterns Quick Reference:

-- Essential SQL patterns for exam -- 1. Delta Lake MERGE pattern MERGE INTO target_table t USING source_table s ON t.id = s.id WHEN MATCHED THEN UPDATE SET * WHEN NOT MATCHED THEN INSERT *; -- 2. Incremental processing with Auto Loader CREATE STREAMING TABLE bronze_raw AS SELECT * FROM cloud_files("/mnt/raw/", "json"); -- 3. Data quality with expectations CREATE TABLE silver_cleansed ( CONSTRAINT valid_id EXPECT (id IS NOT NULL), CONSTRAINT positive_amount EXPECT (amount > 0) ) AS SELECT * FROM bronze_raw; -- 4. SCD Type 2 implementation MERGE INTO dim_customers t USING stg_customers s ON t.customer_id = s.customer_id AND t.is_current = true WHEN MATCHED AND t.email <> s.email THEN UPDATE SET valid_to = current_date(), is_current = false WHEN NOT MATCHED THEN INSERT (customer_id, email, valid_from, valid_to, is_current) VALUES (s.customer_id, s.email, current_date(), '9999-12-31', true); -- 5. Performance optimization OPTIMIZE sales_table ZORDER BY (customer_id, region); -- 6. Time travel and data lineage SELECT * FROM sales_table TIMESTAMP AS OF '2025-01-01'; DESCRIBE HISTORY sales_table; # Essential PySpark patterns from pyspark.sql import functions as F # Incremental DataFrame processing incremental_df = (spark.read .format("delta") .option("readChangeFeed", "true") .option("startingTimestamp", "2025-01-01T00:00:00Z") .table("source_table") ) # Complex aggregation with windows window_spec = Window.partitionBy("customer_id").orderBy("transaction_date") result_df = (df .withColumn("prev_amount", F.lag("amount").over(window_spec)) .withColumn("amount_change", F.col("amount") - F.col("prev_amount")) .withColumn("row_num", F.row_number().over(window_spec)) )

Success Tips & Best Practices

Study Strategies:

  • Hands-on Practice: Use Databricks workspace extensively for all concepts - real experience is crucial
  • Focus on Production Patterns: Professional exam tests production-grade solutions, not just concepts
  • Master Both Python and SQL: Exam includes both languages for different scenarios
  • Understand Trade-offs: Be prepared to discuss cost/performance/complexity trade-offs
  • Practice Time Management: 120 minutes for 59 questions requires good pacing

Exam Day Preparation:

  • Review key Delta Lake operations and Unity Catalog security patterns
  • Practice reading and interpreting Spark query plans
  • Understand error handling and retry mechanisms in workflows
  • Be familiar with data ingestion patterns and incremental processing
  • Get adequate rest - the exam requires intense focus for 2 hours

During the Exam:

  • Read questions carefully - look for keywords like "most efficient", "production-grade", "secure"
  • Eliminate obviously wrong answers first in multiple-choice questions
  • Manage your time - don't spend more than 2 minutes on any question initially
  • Flag difficult questions and return to them if time permits
  • Trust your hands-on experience - the exam tests practical knowledge

Professional Level Focus

The Professional exam assesses your ability to design, build, and maintain production-grade data engineering solutions. Focus on understanding not just how to implement features, but when and why to choose specific patterns based on requirements for scalability, reliability, security, and cost-effectiveness .

Ready to Certify as a Databricks Data Engineer Professional?

Follow this comprehensive 14-day study plan and demonstrate your advanced data engineering expertise!


Register for Professional Exam

No comments:

Post a Comment

Databricks Certified Data Engineer Associate Study Guide 2025

Databricks Certified Data Engineer Associate Study Guide 2025 Databricks Certified Data E...